B.M.S COLLEGE FOR WOMEN AUTONOMOUS
 BENGALURU - 560004

END SEMESTER EXAMINATION - OCTOBER 2022

M.Sc. in Mathematics - II Semester
 Partial Differential Equations

Course Code: MM204T
Duration: 3 Hours

QP Code: 21004
Max marks: 70

Instructions: 1) All questions carry equal marks.
2) Answer any five full questions.

1. a) Solve the Lagrange's Partial differential equation:

$$
\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z
$$

b) Solve: $x u_{x}+(x+y) u_{y}=u+1$ with $u(x, y)=x^{2}$ on $y=0$.
2. a) Show that the solution of IVP: $u_{t}+u u_{x}+a u=0, x \in \mathbb{R}, t>0$,

$$
u(x, 0)=b x \text { for } x \in \mathbb{R} \text { is } u=\frac{a b x e^{-a t}}{(a+b)-b e^{-a t}}
$$

b) Find the characteristics of the equation $p q=u$ and hence, determine the integral surface which passes through the parabola $x=0, y^{2}=u$.
3. a) Obtain the canonical form for hyperbolic equation from the standard second order linear partial differential equation in two variables.
b) Classify the Tricomi equation $u_{x x}+x u_{y y}=0$ for $x \neq 0$ and hence determine the canonical form for $x>0$.
4. Solve: (i) $\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial x \partial y}=\sin x \cos 2 y$
(ii) $x^{2} \frac{\partial^{2} z}{\partial x^{2}}-y^{2} \frac{\partial^{2} z}{\partial y^{2}}=x^{2} y^{3}$
5. a) Obtain the D'Alembert's solution of one dimensional wave equation.
b) Show that the variable separable solution of the wave equation in spherical Coordinates gives rise to Legendre differential equation.
6. a) Solve the Dirichlet problem in a half plane :

$$
u_{x x}+u_{y y}=0 ;-\infty<x<\infty, y>0, \text { subject to } u(x, 0)=f(x) ; u \text { is }
$$ bounded as $y \rightarrow \infty$, by infinite Fourier transform method.

b) Find variable separable solution of the Laplace's equation

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\cot \theta}{r^{2}} \frac{\partial u}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \varphi^{2}}=0
$$

7. a) Solve the following IBVP : $u_{t}=K u_{x x}, 0 \leq x \leq 1, t \geq 0$, subjected to

$$
\begin{gathered}
u(x, 0)=f(x), \quad 0 \leq x \leq 1, t \geq 0 \\
u(0, t)=0=u(1, t), \quad t \geq 0
\end{gathered}
$$

by using appropriate Fourier transform technique.
b) Solve the diffusion equation $u_{t}=K u_{x x}, 0 \leq x \leq l, t \geq 0$ subjected to the

$$
\text { conditions } u(x, 0)=f(x), 0 \leq x \leq l, t \geq 0
$$

$$
u(0, t)=0=u(l, t), \quad t \geq 0
$$

by the Fourier decomposition method.
8. a) Determine the Green's function for $u_{t}=K u_{x x},-\infty<x<\infty, t \geq 0$, with

$$
u(x, 0)=f(x), \quad-\infty<x<\infty .
$$

b) Find the Green's function for the following

$$
\begin{gathered}
u_{t t}-9 u_{x x}=Q_{1}(x),-\infty<x<\infty, t \geq 0, \quad \text { subjected to } \\
u(x, 0)=0, \quad u_{t}(x, 0)=0:-\infty<x<\infty, \\
u \rightarrow 0, \frac{\partial u}{\partial x} \rightarrow 0 \quad \text { as }|x| \rightarrow \infty, t \geq 0 .
\end{gathered}
$$

