
BMSCW LIBRARY  
QUESTION PAPER  

 
BMSCW LIBRARY  

B.M.S COLLEGE FOR WOMEN AUTONOMOUS  
BENGALURU – 560004 

 
END SEMESTER EXAMINATION – OCTOBER 2022 

 
M.Sc. in Mathematics – II Semester 
Partial Differential Equations 

 
Course Code: MM204T           QP Code: 21004 
Duration: 3 Hours            Max marks: 70 
 
Instructions:   1) All questions carry equal marks. 

 2) Answer any five full questions. 
 

1.   a) Solve the Lagrange’s Partial differential equation: 

                                      (𝑥 − 𝑦 − 𝑧 )𝑝 + 2𝑥𝑦𝑞 = 2𝑥𝑧 

            b)    Solve: 𝑥𝑢 + (𝑥 + 𝑦)𝑢 = 𝑢 + 1  with  𝑢(𝑥, 𝑦) = 𝑥   on   𝑦 = 0.        

  (7+7) 

 2.     a) Show that the solution of IVP:  𝑢 + 𝑢𝑢 + 𝑎𝑢 = 0, 𝑥 ∈ ℝ , 𝑡 > 0,  

                   𝑢(𝑥, 0) = 𝑏𝑥   for  𝑥 ∈  ℝ   is    𝑢 =  
 

( )
 

   b)  Find the characteristics of the equation  𝑝𝑞 = 𝑢  and hence, determine the integral  

                surface which passes through the parabola 𝑥 = 0, 𝑦 = 𝑢.                        

(6+8) 

3.    a) Obtain the canonical form for hyperbolic equation from the standard second order  

      linear partial differential equation in two variables.     

      b)  Classify the Tricomi equation  𝑢 + 𝑥𝑢 = 0  for  𝑥 ≠ 0 and hence determine  

     the canonical form for 𝑥 > 0.                                                                  

(7+7) 

4.  Solve: (i) − = sin 𝑥 cos 2𝑦  

   (ii)  𝑥 − 𝑦 = 𝑥 𝑦                                                              

(7+7) 
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5.  a) Obtain the D’Alembert’s solution of one dimensional wave equation.  

     b)   Show that the variable separable solution of the wave equation in spherical  

           Coordinates gives rise to Legendre differential equation.                       

(7+7) 

6.  a) Solve the Dirichlet problem in a half plane : 

            𝑢 + 𝑢 = 0 ;  −∞ < 𝑥 < ∞ , 𝑦 > 0,  subject to 𝑢(𝑥, 0) = 𝑓(𝑥);   𝑢  is  

             bounded as  𝑦 → ∞, by infinite Fourier  transform method. 

 b)   Find variable separable solution of the Laplace’s  equation 

              + + + +  = 0                                          

 (7+7)      

7.  a)  Solve the following IBVP :  𝑢 = 𝐾 𝑢  ,   0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0 ,    subjected to    

𝑢(𝑥, 0) = 𝑓(𝑥) , 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0 

  𝑢(0, 𝑡) = 0 =   𝑢(1, 𝑡), 𝑡 ≥ 0 

             by using appropriate Fourier transform technique. 

   b)   Solve the diffusion equation 𝑢 = 𝐾 𝑢  ,   0 ≤ 𝑥 ≤ 𝑙, 𝑡 ≥ 0    subjected to  the  

              conditions   𝑢(𝑥, 0) = 𝑓(𝑥) , 0 ≤ 𝑥 ≤ 𝑙,   𝑡 ≥ 0 

  𝑢(0, 𝑡) = 0 =  𝑢(𝑙, 𝑡), 𝑡 ≥ 0 

                   by the Fourier decomposition method. 

(7+7)      

8. a) Determine the Green’s function for  𝑢 = 𝐾 𝑢  , −∞ < 𝑥 < ∞, 𝑡 ≥ 0,    𝑤𝑖𝑡ℎ      

𝑢(𝑥, 0) = 𝑓(𝑥), −∞ < 𝑥 < ∞.   

   b)  Find the Green’s function for the following 

              𝑢 − 9 𝑢 = 𝑄 (𝑥) , −∞ < 𝑥 < ∞, 𝑡 ≥ 0,       subjected to  

𝑢(𝑥, 0) = 0  , 𝑢 (𝑥, 0) = 0: − ∞ < 𝑥 < ∞,  

                                𝑢 → 0, → 0   as  |𝑥|  → ∞,   𝑡 ≥ 0. 

 (7+7)    
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